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oftware maintenance is a major concern for organizations. Productivity gains in software

maintenance can enable redeployment of Information Systems resources to other activities.
Thus, it is important to understand how software maintenance productivity can be improved.
In this study, we investigate the relationship between project size and software maintenance
productivity. We explore scale economies in software maintenance by examining a number of
software enhancement projects at a large financial services organization. We use Data Envel-
opment Analysis (DEA) to estimate the functional relationship between maintenance inputs and
outputs and employ DEA-based statistical tests to evaluate returns to scale for the projects. Our
results indicate the presence of significant scale economies in software maintenance, and are
robust to a number of sensitivity checks. For our sample of projects, there is the potential to
reduce software maintenance costs 36% by batching smaller modification projects into larger
planned releases. We conclude by rationalizing why the software managers at our research site
do not take advantage of scale economies in software maintenance. Our analysis considers the
opportunity costs of delaying projects to batch them into larger size projects as a potential
explanation for the managers’ behavior.
(Software Maintenance; Data Envelopment Analysis; Software Productivity; Software Economics; Soft-
ware Engineering; Management of Computing and Information Systems)

tenance can enable redeployment of IS resources to
other activities.

In this study, we investigate the influence of project
size on software maintenance productivity. Much of the

1. Introduction

Software maintenance represents a significant cost for
organizations. The IEEE estimates that in the United
States alone, companies spend more than $70 billion an-

nually on software maintenance (Sutherland 1995). A
report by Forrester Research, Inc., describes software
maintenance as a “‘black hole” that consumes over 75%
of the Fortune 1000’s Information Systems (IS) budget
(Eastwood 1993). Thus, there is increased motivation to
manage software maintenance more effectively (Hanna
1993). Yet, perhaps because software maintenance tends
to be viewed as a necessary evil, many technological
and process improvements are directed toward soft-
ware development rather than maintenance (Swanson
and Beath 1989). There is a growing realization, how-
ever, that productivity improvements in software main-
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work in software maintenance arises as relatively small
requests from the users for modifications to existing
software systems. Many organizations handle these re-
quests by simply processing them as they are submit-
ted.! This approach ignores benefits from scale econo-
mies that may arise from proactive renovation strategies
such as a release control concept (Branch et al. 1985,

' A survey of software maintenance practices by Nosek and Palvia
(1990, p. 170), for example, found that while 89% of the responding
organizations reported logging user requests for changes, less than 33%
reported batching change requests.
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McNeil 1979) in which user requests for modifications
to installed applications are grouped into a package and
implemented in a release.

Although there has been considerable interest in in-
vestigating project scale economies for software devel-
opment (e.g., Banker et al. 1994, Byrnes et al. 1993,
Banker and Kemerer 1989), very little examination of
this issue has been done for software maintenance. Em-
pirical studies of software maintenance suggest that
maintenance is a different economic process than de-
velopment, with significant potential to control project
size (Swanson and Beath 1989). However, performance
incentives in software maintenance generally do not fa-
vor maximizing project scale efficiency. This is due, in
part, to the low precision of information signals for per-
formance evaluation in software maintenance (Banker
and Kemerer 1992).

Software maintenance includes work of a short term
nature (e.g., fixing critical problems) as well as of a long
term nature (e.g., a major enhancement to an existing
system). However, maintenance performance is typi-
cally evaluated from the short term perspective, i.e., all
maintenance work is tacitly deemed essential in keeping
software systems operational on a day-to-day basis
(Jones 1991). From this perspective, even if scale econ-
omies are present, managers are penalized for delaying
projects in order to group them into an efficient size. As
a result, there may be little incentive to take advantage
of scale economies in the maintenance production pro-
cess. Thus, it is important to empirically examine scale
economies in software maintenance. Field studies such
as this can provide evidence to justify altering subopti-
mal performance-related incentive schemes in a manner
that would improve software maintenance practice.

We explore the relationship between enhancement
project size, project team inexperience, project tools and
techniques, and productivity for 129 software enhance-
ment projects completed over a three and one-half year
timeframe at a large financial services organization. In
the context of our study, we define an enhancement proj-
ect to include the activities necessary to make and im-
plement the software modifications for a particular user
request. We use the nonparametric Data Envelopment
Analysis (DEA) methodology (Banker et al. 1984) to es-
timate the functional relationship between maintenance
inputs and outputs. We also employ DEA-based statis-
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tical tests to evaluate returns to scale in software main-
tenance (Banker and Chang 1995).

Our results indicate that significant scale economies
are present in the enhancement projects at our research
site. We confirm the robustness of our results by various
approaches, including sensitivity analysis to assess the
influence of potential outliers and conducting tests for
returns to scale under alternative formulations of our
basic model. In all cases, the results confirm the pres-
ence of significant scale economies in our sample of en-
hancement projects. Using the median project size as an
example, we find that if the median project were scale
efficient, there would be almost 4.5 times improvement
in the use of labor hours to modify software function-
ality.

We rationalize why the software managers at our re-
search site do not take advantage of scale economies in
software maintenance despite the potential for labor ef-
ficiency benefits. Our analysis considers organizational
incentives such as the opportunity costs of delay due to
batching enhancement projects as a potential explana-
tion for the behavior of the software managers. For ex-
ample, for the median project size, we find that to take
advantage of scale economies, the software manager
would need to wait 24 times as long to batch up to the
efficient scale size. The rational manager will not delay
beyond the batch size for which the cost of delaying
further exceeds the additional benefit from improved
efficiency in the use of labor hours. Thus, we conclude
that the behavior of the software managers is consistent
with the incentives reflected in the optimal tradeoff be-
tween delay costs and scale economies benefits.

In the following sections of the paper, we describe our
microeconomic model of production in the software
maintenance context, outline our research methodol-
ogy, and present an analysis of our empirical data. We
conclude with a discussion of the implications of our
results for software maintenance management and fu-
ture research.

2. An Economic View of Software

Maintenance Productivity
Software maintenance refers to the modification of soft-
ware after implementation to correct errors, to improve
performance, or to adapt to a changed environment

MANAGEMENT SCIENCE/Vol. 43, No. 12, December 1997
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(Schneidewind 1987, Swanson 1976). In this study, we
focus on projects that adapt or enhance software func-
tionality for existing systems.” From an economic per-
spective, software maintenance can be conceptualized
as an economic production process {Banker et al. 1991,
Kemerer 1987, Kriebel and Raviv 1980). In this sense,
software enhancement projects convert inputs (the ef-
fort of maintenance professionals) into outputs (modi-
fied software). The maintenance production function
represents the efficient relationship between effort and
modified software for enhancement projects, with the
less efficient software enhancement projects lying fur-
ther below the production frontier (Varian 1992, Aigner
and Chu 1968).

Although there has been little examination of scale
efficiencies in software maintenance, there have been
several studies of scale economies in software develop-
ment (Banker et al. 1994, Byrnes et al. 1993, Banker and
Kemerer 1989, Vessey 1986, Jeffrey and Lawrence 1979,
Walston and Felix 1977). An empirical analysis of re-
turns to scale in software development for eight pub-
licly available data sets demonstrated the presence of
both scale economies and diseconomies (Banker and
Kemerer 1989). The authors suggest that, in software
development, productivity increases on larger projects
arise from spreading fixed project management over-
head over a larger base, and from greater use of spe-
cialized personnel and tools (Boehm 1981). However,
eventually, larger project size tends to increase the com-
plexity of interface requirements, the number of inter-
and intra-project communication paths, and the require-
ments for documentation (Brooks 1995, Conte et al.
1986). Thus, average productivity of the project team is
likely to decline beyond the most productive scale size
of the project (Banker 1984). These findings are sup-
ported by an analysis of eleven software development
datasets (Banker et al. 1994), which demonstrated the
presence of both economies and diseconomies of scale
in software development.

? In industry, software enhancements represent the largest category of
IS maintenance expenditures (Nosek and Palvia 1990, Hale and
Haworth 1988, Lientz and Swanson 1980). Corrective and perfective
software maintenance represent a smaller proportion of maintenance
expenditures, accounting for about 20% and 25% of expenses, respec-
tively.

MANAGEMENT SCIENCE/ Vol. 43, No. 12, December 1997

We hypothesize that, in contrast to software devel-
opment, software maintenance is primarily character-
ized by scale economies. Although there are similarities
between software development and maintenance, soft-
ware maintenance is a different production process be-
cause the programming team must spend a significant
amount of time attempting to understand the purpose
and construction of the programs to be modified
(Banker et al. 1997, Littman et al. 1987, Fjeldstad and
Hamlen 1983). In addition, the team must integrate
modifications into an existing technical and user envi-
ronment. Thus, while economies and diseconomies of
scale arise for similar reasons as in software develop-
ment, there are additional sources contributing to scale
economies in software maintenance. For example, effi-
ciency gains in maintenance occur where requests for a
particular system are batched, so that the maintenance
team can spread learning curve effects from becoming
familiar with that system over several requests. In ad-
dition, it is more productive to make several changes to
a system and then perform a single system test prior to
reinstallation, instead of a series of tests. Migrating pro-
gram, data library, and other technical changes from a
test to production environment is more efficient if done
for a batch of changes, rather than for each individual
small change, depending upon the nature of the IS ad-
ministrative procedures for compiling into production.
There are also efficiencies realized from accomplishing
and implementing documentation updates from a batch
of changes, rather than continually modifying docu-
mentation as small changes are made.

Even if scale economies are present in software
maintenance, there could be organizational resistance
against a proactive release control process. The nature
of enhancement project requests tends to differ from
software development in that the requests are gener-
ally smaller, incremental to existing systems, and
have a more immediate impact on the user’s work.
Thus, although “true’” emergency repairs account for
only a small portion of maintenance work (Lientz and
Swanson 1980), there may be institutional pressures
to complete all maintenance requests upon demand.
In describing the implementation of a System Release
Discipline (SRD) approach to maintenance, McNeil
(1979, p. 112) notes some of the difficulties encoun-
tered:
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“

. . some old habits may die hard. Software staff may feel
they are giving up control of ‘their’ system, and indeed they
must sacrifice the freedom to bomb it at will. Users, for their
part, may object to being unable to demand a new feature for
the system on an overnight basis. Their payoff must wait, but
at least when the feature is implemented it is more likely to
work properly. Operations staff may have been getting blamed
for every system problem anyhow, so they can be expected to
favor any change in procedures which makes their lives less
hectic.”

These sentiments are emphasized by software mainte-
nance professionals participating in a study by Dekleva
(1992, p. 17):

. . . due to the length of maintenance tasks, new requests fre-
quently come along before the ongoing task is completed. There
is always something more critical or another user with a prob-
lem. A great deal of time is wasted on stopping and starting
maintenance tasks.”

In software maintenance, organizational incentives
can perpetuate scale inefficiencies. To the users in the
organization, support for existing systems is viewed as
necessary to task accomplishment, with immediate ser-
vice response and minimization of downtime as key
measures of performance (Grady and Caswell 1987).
Due to the large backlog of IS work, users can place a
high priority on every modification request, with the
notion that requests of lower priority would not likely
be addressed until much later, if at all (Martin and Mc-
Clure 1983). Thus, because all maintenance is viewed
as essential to system operation, maintenance managers
could be penalized for delaying modifications, even if
it is more efficient to batch the modifications into larger
projects. These pressures are reflected in a remark by a
maintenance manager at our research site:

‘"

. . it would be nice if I could plan (maintenance) requests,
if I had extended time to plan and schedule. For example . . .
there are so many small projects in the (specific application)
area which I'd like to batch if I could. I'd like to use a release

method like software vendors . . . but the users wouldn’t go

for it. It's too dynamic here.” [Interview transcript, January 25,
1993]

Organizational incentives and pressures could thus pro-
mote an inefficient process in which scale economies are
left unexploited in favor of completing each modifica-
tion as it is requested.

To justify change in maintenance practice, and to sup-
port the development of more efficient economic per-
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formance evaluation mechanisms in software mainte-
nance, it is critical to provide evidence of the potential
benefits to be gained from managerial innovations that
take advantage of scale economies in accomplishing
software maintenance tasks. Our study makes a contri-
bution in this area by empirically documenting the ex-
istence and extent of scale economies in software en-
hancement projects at our research site and by provid-
ing insight into why software managers fail to take
advantage of scale economies.

3. Methodology

3.1. Research Site
Data for this study were collected at a large financial
services organization. The IS department for the orga-
nization is located at company headquarters and sup-
ports all centralized computer processing activities for
the company. The organization has a large investment
in applications written in the COBOL programming lan-
guage that run on IBM mainframe computers. The
study of software maintenance in this kind of environ-
ment is important. According to the Gartner Group,
there are more than 240 billion lines of code in all com-
puter languages, about 80 percent of which is COBOL
(McFarland 1995). A large portion of business comput-
ing expenditures remains devoted to the maintenance
of COBOL software (Hoffman 1996). At the research
site, approximately two-thirds of the application port-
folio was in COBOL at the time of the study. The ma-
jority of maintenance expenditures (80-90%) was spent
on modifications to these COBOL applications. Most of
the application software in the firm was written in the
1970s and 1980s, with the oldest system written in 1969.
The IS department supports both in-house developed
and packaged software applications that have been
written employing a variety of tools and techniques. At
the end of 1993, the size of the application portfolio was
estimated at 366,137 function points (approximately
73.3 million lines of code). Types of maintenance work
include user support (nonprogramming activities such
as responding to user queries), repairs (corrections of
application defects), and enhancements (addition or
modification of application functionality). In 1993, more
than 50% of total IS expenditures was spent on en-
hancements, 3% was new development, and the
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remainder included a variety of activities such as user
support, feasibility studies, and business process rede-
sign projects. Enhancement projects accounted for sim-
ilar proportions of total IS expenditures from 1990 to
1992. Thus, we chose to examine software enhancement
projects as they represented the major kind of IS work
at this site.

In this organization, project teams do not utilize a for-
mal change management program in software mainte-
nance, i.e., requests for all types of maintenance work
are processed individually. There is a strong incentive
to deliver each enhancement project by the date re-
quested by the user; application managers and project
leaders are evaluated according to their ability to de-
liver projects on time. In addition, the IS department
often competes with consultants and contractors for
project work requested by the organization’s business
units, with the effect that project dates are set aggres-
sively. As one project leader commented,

““There’s this feeling that if we can’'t do this (project), the busi-
ness will find someone else who can . . . upper management
is always looking over their shoulders for something better out
there.” [Interview transcript, July 13, 1994, Application Project
Leader]

Thus, although a program to encourage scale efficiency
may be beneficial, there are no organizational and in-
dividual performance incentives in place to support
such a program. That the current approach to managing
enhancement projects is unsatisfactory is reflected in the
remarks of one of the application managers at the site:

“It would be nice to have a change management program. . .
to install changes on a schedule. But we try to be more flexible
to meet what the users want, and then we lose control . . .
entirely. It's a zoo. We need to get control.”” [Interview tran-
script, June 15, 1994, Application Manager]

3.2. Data Collection

Our general strategy was to collect data retrospectively
for completed software enhancement projects. This ap-
proach was chosen because it was not feasible to start a
process to collect project data contemporaneously and
wait for a sufficient mass of data to be available. We
verified the accuracy and reliability of the data by
checking for unusual values, by interviews with project
team personnel and by comparing against the original
project documentation and other company databases. In

MANAGEMENT SCIENCE/Vol. 43, No. 12, December 1997

addition, to increase the validity of the project data, we
imposed a number of selection criteria: recency of com-
pletion, similarity of project type, and similarity of pro-
gramming language. Personnel turnover and lack of
documentation retention make accurate data collection
impossible for projects that are less recent. In addition,
technology and personnel involved are more similar for
projects completed in a shorter and more recent time-
frame; this enables cross-project comparisons. Similar-
ity of project type is important because this improves
homogeneity of the projects analyzed. We included only
projects that modified functionality for the application
systems; thus, projects such as package installations or
conversions to new operating systems were not com-
pared with projects that modify functionality. Our final
criterion was similarity of programming language. All
projects included modifications to COBOL programs;
therefore, the results of our analysis are not confounded
by the effects of multiple languages.

After discussions with IS staff at the research site,
only enhancement projects completed within a 3.5-year
timeframe (between July 1990 and December 1993)
were considered for inclusion in the study. This is be-
cause archival data for projects completed prior to mid-
1990 were incomplete or nonexistent. Of the 144 projects
initially considered for inclusion in the study, 15 were
eliminated because they were either non-COBOL or
nonmodification projects. Our final data set included
data for 129 software enhancement projects that modi-
fied 34 different application systems.

3.3. Empirical Analysis

To investigate the relationship between enhancement
project size and productivity, we employ Data Envel-
opment Analysis (DEA), a nonparametric methodol-
ogy for production frontier estimation developed by
Charnes et al. (1981) and extended to a formal
production economics framework by Banker et al.
(1984).> We employ DEA rather than a parametric
model as our primary methodology to estimate the

* We refer to the DEA model developed by Charnes et al. (1981) as the
CCR model, and by Banker et al. (1984) as the BCC model. For an
intuitive discussion of the use of DEA to estimate the software main-
tenance production function and evaluate returns to scale, see Banker
and Slaughter (1994).
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production relationship between enhancement proj-
ect inputs and outputs. Because DEA does not impose
a specific form on the production function and main-
tains relatively few assumptions, its estimates are
likely to be more robust than those obtained from
parametric models that postulate a certain structure
like a linear or quadratic form for the maintenance
production function (Banker and Maindiratta 1988).
We specify the following model to describe the pro-
duction relationship between maintenance inputs and
outputs: x; = f(y;, Z;))*0;. In this model, x; and y; are the
input and output quantities, Z; is a vector of project con-
textual variables, and 6, is the inefficiency of project j.
Specifically, x; represents project team labor. Project team
labor is assessed in terms of enhancement project hours.
Labor hours is a critical input because IS personnel staff
time is an expensive and scarce resource in software
maintenance (Moad 1993). Project team labor is mea-
sured by the total number of labor hours logged to the
project by the maintenance team, and was obtained
from the organization’s project time tracking system.
Enhancement project size is represented by y;. Enhance-
ment project size is assessed in terms of modified soft-
ware functionality. The size of modified software func-
tionality is measured by the number of function points
added, changed and deleted by the project. A function
point corresponds to a user business function such as
sales order entry or add customer. The function point met-
ric counts the number of unique inputs, outputs, logical
files, external interface files, and external queries mod-
ified in a software project (IFPUG 1993). Each count is
weighted for difficulty depending upon a number of
environmental factors such as whether the software ap-
plication runs in a distributed environment, or whether
the application is held to above average performance
standards (Albrecht and Gaffney 1983). Thus, function
points provide an estimate of the number of files, re-
ports and screens updated by the enhancement project,
adjusted for environmental complexity. In a survey by
the Quality Assurance Institute, function points were
rated as the best available software size measure (Perry
1986), and were considered superior to the alternative
measure of software lines of code. Function points have
been demonstrated to be a reliable estimate of software
size (Kemerer 1993). For this study, project function
points were obtained from the organization’s Metrics
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Group, which is responsible for measuring software
projects and applications.

Z; is a vector of contextual variables that affect the
production relation. These are project factors, including
characteristics of the project team as well as project tools
and techniques. Specifically, our model includes project
team inexperience, the number of hardware platforms im-
pacted by the project, the number of design techniques em-
ployed in the project, the number of development tools re-
quired in the project, and the number of testing tools and
techniques required by the project team. We include project
team inexperience because prior empirical research has
demonstrated that the experience of the project team
with the software application has a significant influence
on maintenance task performance (Oman et al. 1989,
Vessey 1989, Littman et al. 1987, Pennington 1987, Cur-
tis 1981). Project team inexperience is subjectively as-
sessed on a five-point scale by software application
managers at the research site in response to a project
questionnaire, with one representing low inexperience
and five high inexperience.

The number of hardware platforms impacted by the
enhancement project as well as the diversity of project
tools and techniques employed for design, develop-
ment, and testing should also influence project effi-
ciency. The evidence from manufacturing environments
suggests that production of dissimilar products where
there is little sharing of inputs and production processes
reduces focus and results in lower performance (Skin-
ner 1974). In economics, it is argued that there are cost
complementarities or economies of scope in sharing
common inputs and processes among various products
with commonalities in production, and diseconomies of
scope when inputs and processes differ (Panzar and
Willig 1977 and 1981). In the software context, diversity
of tools, techniques and platforms may require in-
creased programmer labor in software maintenance for
several reasons. Switching costs are incurred due to
multiple, varied process flows and change over in pro-
cesses required when modifying software that runs on
different hardware platforms or when using different
methodologies and tools. Diversity in platforms, tools
and techniques can also increase the difficulty of soft-
ware quality control, testing, and verification. For ex-
ample, to change an application that runs on multiple
hardware platforms, the project team must switch
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Table 1 Descriptive Statistics for Variables in Model
Variable Mean Median Std Dev Min Max Qi Q3 n

Project Function Points 424.82 108.00 865.91 4.00 5156.00 18.00 320.50 129
Project Hours 607.02 328.75 1038.30 16.00 10250.10 169.37 661.55 129
# Hardware Platforms 1.44 1.00 0.85 1.00 4.00 1.00 2.00 129
# Design Tools 0.67 1.00 1.05 0.00 5.00 0.00 1.00 129
# Development Tools 7.50 7.00 3.26 1.00 18.00 5.00 9.00 129
# Testing Tools 9.68 10.00 5.33 0.00 21.00 5.00 14.00 129
Project Team Inexperience 1.7 2.00 0.76 1.00 5.00 1.00 2.00 129
Average Project Team Size 2.92 2.00 222 1.00 15.00 1.50 4.00 77
Elapsed Days 96.70 50.00 232.88 1.00 1992.00 19.50 95.50 Ir
between tools and libraries that are appropriate to each B, \ =0, (4.

platform. To test the changes, the project team must con-
duct an integration test that is not necessary in a single-
platform environment. The number of hardware plat-
forms impacted by the enhancement project, and the
number of different tools and techniques used in en-
hancement project design, development and testing are
obtained from project questionnaires and verified
against project documentation. Table 1 provides de-
scriptive statistics for the variables included in our
model.

4. Empirical Results

4.1. BCC and CCR Efficiency Ratings for the
Enhancement Projects
To assess the technical inefficiency 8¢ = 6%(x; yo, Zo) of

each enhancement project (xy; o, Zo), we estimate the
following BCC model:

6% (xo; Yo, Zo) = Min 6 (4.2)
subject to:
129
z )\/'x/' = X[)e, (4.b)
j=1
129
> Ny = Yo, (4.c)
j=1
129
Z )\/'Zk)' =20, k= 1, F 5, (4d)
j=1
129
Z A, == 1, (48)

MANAGEMENT ScIENCE/Vol. 43, No. 12, December 1997

where j = project observation number, x = project labor
hours, y = project function points, z; = contextual vari-
ables, k = 1, ..., 5, 6% = inefficiency variable, BCC
model, and \ = weights on referent observations.

As shown by Banker (1993), the DEA estimator of ¢
is statistically consistent, and the asymptotic empirical
distribution of the DEA estimates retrieves the true dis-
tribution of ¢ under the maintained assumptions em-
bodied in the DEA postulates of convexity, monoton-
icity, envelopment and likelihood of efficient perfor-
mance. These assumptions are consistent with both
increasing and decreasing returns to scale, and do not
impose constant returns to scale. For our sample of en-
hancement projects, 17 projects are identified as efficient

using the BCC model.

Estimates of aggregate technical and scale effi-
ciency under the CCR model are obtained by solving
the above linear program, except that the objective
function in (4.a) is maximized subject only to con-
straints (4.b), (4.c), (4.d), and (4.f). The CCR estima-
tor is also statistically consistent under the main-
tained DEA assumptions, with the addition of a pos-
tulate for constant returns to scale. We refer to the
CCR inefficiency estimate as €. For our sample, nine
projects are identified as technical and scale efficient
using the CCR model.

4.2. Tests for Returns to Scale

Since the DEA estimator is statistically consistent, under
the null hypothesis of constant returns to scale, the as-
ymptotic empirical distributions of the DEA estimators of
#® and € are identical, each recovering the true distribu-
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tion of the inefficiency variable ¢ (Banker 1993). This mo-
tivates the development of two semiparametric statistical
tests of returns to scale (Banker and Chang 1995). The two
tests correspond to different maintained assumptions
about the distribution (exponential versus half-normal) of
Y =60 —1=0.If y is distributed exponentially, then the
statistic to test for constant returns to scale is:

I
3 6F - 1).

Jj=1

]
Y 6f-1)
j=1

This statistic is evaluated asymptotically against the F-
distribution with (2N, 2N) degrees of freedom. If ¢ is
distributed half-normally as |N(0, o?)|, the statistic to
test for constant returns to scale is:

I J
Y, 67 — 1)/ B0 —1)°
j=1

j=1

This statistic is evaluated asymptotically against the F-
distribution with (N, N) degrees of freedom. These tests
have been used to evaluate increasing or decreasing re-
turns to scale for software development projects
(Banker et al. 1994). The robustness of similar DEA-
based tests has been demonstrated for different under-
lying production functions and inefficiency distribu-
tions as well as small sample sizes (Banker and Chang
1995).

Table 2 summarizes the hypotheses, test statistics,
and results. Under all tests, the null hypothesis of con-
stant returns to scale is rejected at the 5% level of sig-
nificance. This suggests that variable returns to scale are
present. We also reject the hypotheses of decreasing re-
turns to scale and non-increasing returns to scale. Given
this result, we conclude that this data set is character-
ized primarily by increasing returns to scale, and that
the enhancement projects are too small for maximum
average productivity.

4.3. Robustness of Results
To assess the validity and robustness of our re-
sults, we conducted a number of sensitivity analyses.
First, we reestimated our original model, substi-
tuting project cost for project labor hours as the
input variable. This substitution reflects the con-
jecture that differences in project team skill levels
are reflected more accurately in project cost rather
than in project hours. Our results are presented in Ta-
ble 3. The results are consistent with our original
model: the same projects are identified as efficient,
and the enhancement projects exhibit increasing re-
turns to scale.

As a second sensitivity check, following Richmond
(1974), we iteratively removed efficient projects from
our data set and recomputed our test statistics to

Table 2 Returns to Scale DEA Tests for Basic Model
DEA Tests
Based On:
Exponential Distribution Assumption Half-Normal Distribution Assumption

Null Alt.

Hyp. Hyp. Test Statistic FValue Test Statistic FValue Result
CRS VRS T2 6 — WS 67 - 1) 7.79* bl U 2 Vi bl R 77.09* Reject CRS
NDRS DRS = eF - WE2 6 - 1) 1.00 35 0= WR S ) = 1.00 Fail to

Reject

NDRS
NIRS IRS Z}f‘f (6° — 1)/ ]f? ()] i Z}Z? (8¢ - 1)2/Z/‘ff (85 —1)? 77.09* Reject

NIRS

* Indicates significance at 5% level.
Key to Tables 2-6:

CRS = constant returns to scale, VRS = variable returns to scale, NDRS = nondecreasing returns to scale, DRS = decreasing returns to scale, NIRS = non-
increasing returns to scale, IRS = increasing returns to scale, 6° = CCR inefficiency variable, #2 = BCC inefficiency variable, #” = NIRS inefficiency variable,

#f = NDRS inefficiency variable.
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Table 3 Sensitivity Analysis Using Project Cost

DEA Tests
Based On: Exponential Distribution Assumption
[ Half-Normal Distribution Assumption
Null Alt. F
Hyp. Hyp. Test Statistic Value Test Statistic FValue Result
CRS VRS T3 (0F - 1)/X (67 7.42* 29 (0f — 17X (6F - 1) 72.44* Reject CRS
NDRS DRS Z}j‘;‘ (8¢ - 1)/229 0” ) 1.00 Z}f (6f — )2/2129 67 — 1) 1.00 Fail to
Reject
NDRS
NIRS IRS 21_29 1)/2,]_29 (6 — 7.42* 2‘, (6f — 1)2/2,129 72.44* Reject NIRS

* Indicates significance at 5% level.

assess the extent of the influence of efficient next iteration, we then deleted the 22 projects identi-
projects on our results. We deleted the 17 proj- fied as efficient using the BCC model for the remain-
ects identified as efficient using the BCC model. Inthe  ing projects. After each deletion, we recomputed the

Table 4 Sensitivity Analysis With Efficient Projects Removed

Iteration #1; 17 Projects Removed, Analysis of Remaining 112 Projects

DEA Tests
Based On: Exponential Distribution Assumption Half-Normal Distribution Assumption
Null Alt. F 2
Hyp. Hyp. Test Statistic Value Test Statistic Value Result
CRS VRS 2 (6f - 1)/2‘29 62— 6.15* Z}jﬁ’ (6f — 1)2/2 @7 — 1y 39.73* Reject CRS
NDRS DRS 2}:9 (6f — 1)/2129 (67 - 1.00 0 (oF — )2/}:‘29 (6° -1y 1.00 Fail to
Reject
NDRS
NIRS IRS 2‘29 (6r — /Z:j? 6F - 1) 6i15" 2'29 (6f — )2/2 (6f - 39.73* Reject NIRS
* Indicates significance at 5% level.
Iteration #2: 22 Additional Projects Removed, Analysis of Remaining 90 Projects
DEA Tests
Based On: Exponential Distribution Assumption Half-Normal Distribution Assumption
Null Alt. F F
Hyp. Hyp. Test Statistic Value Test Statistic Value Result
CRS VRS 2,'-29 (6f — 1)/2‘,129 67 — 7.36" sz (6f - 1)212‘29 (82 —1)? 56.85* Reject CRS
NDRS DRS ):‘29 (6° - 1)/2 (67 — 1) 1.00 Z}f" (6° — )’1/2,‘29 (87 — 1)? 1.01 Fail to
Reject
NDRS
NIRS IRS Z (6° — 1)/2 65 = 1) 7.36* 2‘29 (6f - )2/5_‘, (6f — 1) 56.84* Reject NIRS
* Indicates significance at 5% level.
MANAGEMENT SCIENCE/ Vol. 43, No. 12, December 1997 1717
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Table 5 Sensitivity Analysis with Additional Z Variables
DEA Tests
Based On:
Exponential Distribution Assumption Half-Normal Distribution Assumption
Null Alt.
Hyp. Hyp. Test Statistic FValue Test Statistic FValue Result
CRS VRS fzf (6f - 1)/2}_?? @ -1) Z.55 2771 (6° - 1)2/2:5‘1‘ (6% — 1)? 294.38* Reject CRS
NDRS DRS D el G T il (2 1.00 b ot /2 U il (7 Vi 1.00 Fail to
Reject
NDRS
NIRS IRS 2]?? (6° - 1)/2]:?? (65 — 1) T7.55" ij? (6 - 1)92/‘?? (65 — 1) 294.38* Reject
NIRS

* Indicates significance at 5% level.

DEA test statistics for the remaining projects. Our re-
sults are presented in Table 4. These results indicate
that, for each iteration, the sample of remaining en-
hancement projects exhibits increasing returns to
scale.

As a third sensitivity check, we examined the effect
on scale economies of including two additional project
variables in our vector of contextual variables Z;: average
project team size and elapsed project days.®> We estimated
our model for the subset of 77 projects for which these
variables were available and re-computed the DEA test
statistics. Our results are presented in Table 5, and in-
dicate that these enhancement projects exhibit increas-
ing returns to scale.

Finally, we examined alternative nonparametric for-
mulations for our model to determine whether a differ-

* We also considered the possibility of measurement error in the data
by estimating a stochastic DEA model (Banker et al. 1991). While for-
mal statistical tests are not available for this model, we find the cor-
relations between the efficiency variables for different weights for
measurement errors to be very high.

5 Average project team size indicates the mean size of the project team
over the life of the project. Elapsed project days includes the number of
calendar days from project start to project finish. Both variables were
available for 77 of the 129 projects. As not all of the application man-
agers wished to collect these variables, they were available only for
enhancement projects that modified certain applications. A compari-
son of means for the variables included in our original model between
the 77 projects and remaining 52 projects indicates that the means are
not significantly different for any of the variables. This suggests that
the 77 projects are representative of our larger sample.

1718

ent production relationship is exhibited for enhance-
ment projects that add versus modify or delete software
functionality. Our original model includes a single
output—the total functionality added, changed, and de-
leted by the project. We considered the possibility that
a different production relationship may exist for proj-
ects that add functionality versus change functionality.
Thus, we examined alternative models with multiple
outputs. One of the models includes three outputs for
functionality added, functionality changed, and func-
tionality deleted (note that the sum of these three output
measures equals the single output measure we used in
our original model). As only 18 projects in our sample
deleted functionality, we also formed a model with two
outputs: one for functionality added and one for func-
tionality changed and deleted. Results of estimating
these models are presented in Table 6. For both alter-
native models, DEA tests confirm the presence of sig-
nificant scale economies.

In all cases, our sensitivity analyses demonstrate the
robustness of our result that enhancement projects at
our research site are characterized by increasing returns
to scale. That is, most of the projects are too small for
maximum average productivity, with the implication
that significant scale economies could potentially be ex-
ploited by increasing enhancement project size.

5. Discussion
Our results provide evidence that scale economies are
present in software maintenance at our research site.
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Table 6 Sensitivity Analysis with a Two Output and a Three Output Model
Two Output Model:
DEA Tests
Based On: Exponential Distribution Assumption
Half-Normal Distribution Assumption
Null Alt. F
Hyp. Hyp. Test Statistic Value Test Statistic FValue Result
CRS VRS 2}_29 (6f - 1)/2129 (6% - 752" Z:j‘f (6° — 1)212}3*3 (82 — 1y 70.42* Reject CRS
NDRS DRS i 1)/):‘29 (6 - 1.00 TEA0f = WIS = 1) 1.00 Fail to
Reject
NDRS
NIRS IRS 0 0f - WLE (6 - 7.52* T2 (0F — 1B (0 - Y 70.42* Reject
NIRS
* Indicates significance at 5% level.
Three Output Model:
DEA Tests
Based On: Exponential Distribution Assumption
Half-Normal Distribution Assumption
Null Alt. E
Hyp. Hyp. Test Statistic Value Test Statistic FValue Result
CRS VRS Z:f? (6° - 1)/5_‘,‘29 (6% — 1) 7.89* 2‘29 (6f — 1)2/2,129 (85 —1)? 78.08* Reject CRS
NDRS DRS ]jf (6° — 1)/2 (67 - 1.00 2}:9 (6f — )2/2129 (67 — 1)? 1.00 Fail to
Reject
NDRS
NIRS IRS 2 (6° - 1)/2’,‘29 (6F - 7.91* Z:j? (6° — 1)2/2,}3? (6 — 1) 78.09* Reject
NIRS

* Indicates significance at 5% level.

Note: The three outputs include Project Function Points Added, Project Function Points Changed, and Project Function Points Deleted. The two outputs
include Project Function Points Added, and Project Function Points Changed + Deleted. Total Project Function Points = Project Function Points Added

+ Project Function Points Changed + Project Function Points Deleted.

The presence or absence of scale economies at a given
enhancement project size is important for software
maintenance management because of the potential for
reducing maintenance costs. We calculate the potential
percentage cost reduction from exploiting scale econo-
mies in this set of projects using the actual project hours
and the scale efficiency measure e*“*'* = §°/6° = 1
(Banker et al. 1984, p. 1089), which assesses the diver-
gence from the most productive scale size for each
project. The potential percentage cost reduction = X (ac-
tual project hours — scale efficient project hours) /2 (ac-
tual project hours) = 1 — = [e***"®*(actual project
hours) / (total actual project hours)] = 1 — weighted av-
erage scale efficiency. For our set of projects, the

MANAGEMENT SCIENCE/Vol. 43, No. 12, December 1997
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weighted average scale efficiency is 64.22%, which im-
plies that if all of the projects were scale efficient, the
potential percentage cost reduction would be 1 — .6422
or 35.78%. This translates into a potential reduction in
total project hours of 28,018 for the set of projects, a
dollar cost reduction of $1,821,170 (at the organization’s
standard IS wage rate of $65 per hour). The potential
cost savings are $1,070,924 if only the worst half of the
projects become scale efficient, and $595,523 if only the
worst one-fourth of the projects become scale efficient.
An intriguing question emerges, then, from our
study: given the economies of scale in the enhancement proj-
ects, why did the software managers fail to take advantage
of efficiency gains from batching the projects? The
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remarks of software managers at the research site,
such as, It would be nice to have a change manage-
ment program,” and ‘“There are so many small pro-
jects. . .thatIwould like to batch if I could,” indicate
that, although the managers may not have known the
specific scale sizes to optimize maintenance produc-
tivity, they were not unaware of the benefits of group-
ing small maintenance modifications into larger proj-
ects. It is also evident from their comments that there
were institutional pressures (and in some cases, per-
formance penalties) for delaying work on projects so
that the projects could be batched. Performance re-
quirements such as system availability and minimi-
zation of downtime also encouraged a short-term fo-
cus. That the software managers adjusted their be-
havior to conform to institutional pressures is evident
in their remarks such as “I'd like to use a release
method like software vendors, but users wouldn’t go
forit,” or “We try to be flexible to meet what the users
want and then we lose control.”

From an economic perspective, the observed behavior
of the software managers could be rationalized by ex-
amining the tradeoff between the opportunity cost of
delay to batch projects versus the benefit of scale econ-
omies that could be exploited. To gain insight into this
tradeoff, we estimated the scale elasticities for our sam-
ple of enhancement projects. Using the DEA BCC
model, scale elasticity § (Banker et al. 1984, p. 1090) is
estimated by:

§ = v*x;/ 6] (u*y; + X, wizy),

where k = 1, ..., 5 contextual variables; v¥, u*, w* are
optimal values of the dual variables to constraints (4.b),
(4.c), and (4.d), respectively; and #* is the optimal so-
lution to the linear program in (4) for each of thej =1,
..., 129 projects. Scale elasticity measures the percent-
age change in output corresponding to a one percent
change in input. Thus, the larger the value of § > 1, the
greater the extent of increasing returns of scale. For our
sample, 126 of the 129 values for § are greater than one,
the mean value of § is 2.77, the median value is 2.24, the
maximum value is 23.94, and the upper and lower quar-
tile values are 3.30 and 1.52, all of which indicate in-
creasing returns to scale. We also estimated a paramet-
ric function, x = ay” [1i-, z2*. Table 7 shows the esti-
mates. We find that £ is significantly less than zero, and

1720

§ = 1/ = 3.74, which suggests increasing returns to
scale (Panzar and Willig 1977), consistent with our non-
parametric results.

We then estimated the optimal batch size for enhance-
ment projects at our research site, adapting the standard
production lot sizing model (Hax and Candea 1984, p.
134) to evaluate the tradeoff between the costs of not
exploiting scale economies and the costs of delay due to
batching. We optimize over a period of t days and use
the following notation: n = the total number of function
points of enhancement requests for an application during
the period, y = project batch size in function points, x
= labor hours required for a project of y function points
with contextual variables z;, w = the average hourly
wage rate, and ¢ = the opportunity cost per day of de-
laying a request beyond the normal production time, i.e.,
the cost of batching.® Assuming a production function x
= ay” [1i-; z7* with B < 1 to reflect increasing returns
to scale, the costs of production can be expressed as: (n/
y)way” [13-; z7*, and the costs of delaying work on proj-
ects in order to batch can be expressed as: tcy /2.

Therefore, to minimize total costs = production costs
+ costs of delay = (n/y)way” ITic, z2* + tcy/2 with
respect to y, we set the first derivative equal to zero:

5
(B — Dwnay? 2 [[z2* + ct/2=0.

k=1

Solving for the optimal project batch size y, we have

5 1/(2-B)
¥t = [(2/ct)(1 — ﬂ)(w’na I1 zZ")] 2

k=1

However, since it is difficult to estimate a precise value

¢ Note that the assumptions behind this model include known demand
for project function points, uniform arrival of function points, work is
done sequentially, and batching is not possible across applications. In
the context of software maintenance at our research site, it is reason-
able to assume that demand for function points is known and that
only within-application batching is possible because of the nature of
the enhancement projects and the organizational structure (individual
application managers respond to the needs of specific sets of users).
Whether work is done sequentially (i.e., one project at a time) depends
on how work is assigned to the project teams within an application.
The arrival of function points depends on the timing of the requests
submitted by the business users.

7 Second-order conditions indicate that the solution from the first-order
condition provides a global minimum when 8 < 1. We employ a
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Table 8 Delay Costs Necessary to Rationalize Various Batch Sizes

Delay Cost = ¢* = (/1)(S — 1)(1/8)2way"~2 TS, Zp* = [(1608.63/1217)( — 1)(1/5)(2)(65)(.8749)(5-2))(13454)(1:2634) (72772
(101 4375)(2.5202)]

For various values of y and §, ¢* =

Project Function Delay Cost § Delay Cost Delay Cost Delay Cost Delay Cost Delay Cost
Points (y) =23.94 at § = 10.00 ats =374 ats=3.30 ats =224 ats=1.52
5,500 0.00046 0.00071 0.00245 0.00316 0.00861 0.03302
5,000 0.00055 0.00085 0.00289 0.00372 0.00999 0.03753
4,500 0.00068 0.00104 0.00347 0.00445 0.01176 0.04323
4,000 0.00086 0.00131 0.00426 0.00543 0.01413 0.05063
3,500 0.00111 0.00168 0.00536 0.00681 0.01739 0.06057
3,000 0.00151 0.00225 0.00701 0.00885 0.02209 0.07450
2,500 0.00215 0.00319 0.00961 0.01206 0.02933 0.09516
2,000 0.00333 0.00487 0.01415 0.01762 0.04150 0.12840
1,500 0.00585 0.00842 0.02329 0.02871 0.06490 0.18892
1,000 0.01295 0.01818 0.04702 0.05713 0.12188 0.32559
750 0.02274 0.03141 0.07740 0.09310 0.19061 0.47906
500 0.05031 0.06786 0.15626 0.18528 0.35800 0.82563
250 0.19551 0.25327 0.51932 0.60086 1.05151 2.09366
200 0.30265 0.38700 0.76446 0.87753 1.48750 2.82490
150 0.53161 0.66849 1.25845 1.42995 2.32630 4.15649
100 1.17605 1.44433 2.54067 2.84581 4.36909 7.16342
15 2.06578 2.49489 4.18244 4.63733 6.83285 10.54010
50 4.56996 5.39044 8.44391 9.22896 12.83294 18.16514
25 17.75827 20.11782 28.06329 29.92949 37.69303 46.06349
20 27.48991 30.74043 41.30995 43.71066 53.32152 62.15182
15 48.28728 53.09988 68.00428 71.22776 83.38983 91.44880
10 106.82207 114.72734 137.29348 141.75349 156.61651 157.60571
5 415.09616 428.17758 456.29434 459.70606 460.01565 399.65942
3 1,128.70609 1,130.15112 1,105.71403 1,094.03236 1,017.71137 793.43471
2 2,496.94578 2,441.79914 2,232.32001 2,177.28199 1,911.38901 1,367.43012
1 9,702.79377 9,113.11561 7,419.10687 7,060.91691 5,614.15130 3,467.55407

In particular, for batch size:
425 Mean 0.06923 0.09249 0.20725 0.24433 0.46122 1.02758
4 Min 642.57139 654.26390 671.67819 671.37973 650.74977 539.24614
18 Q1 33.78915 37.55340 49.58368 52.27003 62.81019 71.59473
108 Median 1.01152 1.24785 2.22349 2.49733 3.87646 6.46027
321 Q3 0.11983 0.15751 0.33676 0.39310 0.71294 1.49679
5,156 Max 0.00052 0.00081 0.00274 0.00353 0.00952 0.03601

assistance of managers and staff at our data site was invaluable. Help-
ful suggestions from three anonymous reviewers, the associate editor,
and the editors are also gratefully acknowledged.

practices. Finally, future studies could employ our
methodology to assess the performance of organiza-
tions that utilize a proactive change management pro-

gram in software maintenance.’

® We gratefully acknowledge research support from the Quality Lead-
ership Center at the University of Minnesota. The cooperation and

MANAGEMENT SCIENCE/Vol. 43, No. 12, December 1997

References

Aigner, D. ]. and S. F. Chu, “On Estimating the Industry Production
Function,” American Economic Rev., 58 (1968), 826-839.

Albrecht, A. J. and J. Gaffney, ““Software Function, Source Lines of

1723

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com



BANKER AND SLAUGHTER
Scale Economies in Software Maintenance

for ¢, we find it more convenient to pose the question
in terms of the value of
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the production of these projects. This implies that for
the managers at our research site to have acted ration-
ally, they must have perceived estimates of the cost of
delay to be no less than $0.21 per function point per day
on average for the common enhancement requests.

6. Concluding Remarks
In this paper, we explore the relationship between proj-
ect size and productivity for software enhancement
projects in a field setting. Our results indicate the pres-
ence of significant scale economies in the software en-
hancement projects. We examine why the software
managers at our research site do not take advantage of
these scale economies. Our analysis of the tradeoff be-
tween the benefits of scale economies and opportunity
costs of batching indicates that the behavior of the soft-
ware managers can be rationalized given the extent of
scale elasticities for these projects, as well as the perfor-
mance penalties for delays due to batching of projects.
Our findings have important implications for soft-
ware maintenance research. A primary implication is
that researchers interested in software productivity
should consider project size as an important influence
on maintenance productivity. Another implication is
that organizational incentives can discourage practices
that improve productivity. There are several possible
extensions to this study. We have examined software
enhancement projects in a commercial, profit-oriented
environment and expect that our findings would gen-
eralize to similar settings. It would be interesting to as-
sess the tradeoff between the delay costs of batching and
scale efficiencies in a different environment, such as a
nonprofit-oriented environment like the government. In
government environments, software maintenance is of-
ten contracted at lowest fixed annual price with less
pressure to implement by certain dates. Under such an
arrangement, incentives to bid the lowest amount could
encourage use of batching to lower maintenance costs,
and delay cost penalties to batch could be relatively low.
Thus, we would expect to see greater exploitation of
scale economies from batching in government environ-
ments. This conjecture could be empirically tested in
future studies. Another possibility for further research
is to examine the impact of different organizational in-
centives on the use of alternative software maintenance
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